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Abstract. A general method is presented for expanding random functions in orthogonal 
polynomials of binomial-random variables for transport in randomly inhomogeneous 
media. The expansion projects the stochastic equation onto the statistically orthogonal 
polynomials of binomial variables. It generates an infinite set of coupled equations for the 
determination of kernels in the expansion where randomness is removed at the outset. The 
expansion in orthogonal polynomials is applied to inhomogeneous transport in bond- 
disordered resistor networks (bond model). The expression for the effective conductivity is 
obtained, to order c2 (c being the fraction of broken bonds), by truncating the infinite set of 
coupled equations for kernels after the third term. It is found that the expression agrees 
with that derived from the two-bond approximation. The expansion in orthogonal poly- 
nomials is also applied to the clumped-bond model and the continuum model. Truncated 
equations are derived to govern the kernels in the expansions. 

1. Introduction 

The properties of randomly inhomogeneous physical systems have recently been 
investigated intensively by both experimental and theoretical methods. The system can 
be simulated by a continuum model or by a resistor network model. Numerical 
computations of the conductivity have been performed using Monte Carlo techniques 
(Kirkpatrick 1973, Seager and Pike 1974, Webman eta1 1975, Winterfeld eta1 1981). 
Various theoretical methods, including the perturbation expansion (Hori and 
Yonezawa 1974, 1975a, b, 1977, Blackman 1976, Ahmed and Blackman 1979), the 
variational approach (Hori 1973a, b, Willemse and Caspers 1979), the effective- 
medium approximation (EMA) (Bruggeman 1935, Landauer 1952, Kirkpatrick 1973, 
Watson and Leath 1974, Bernasconi and Wiesmann 1976) and the percolation theory 
(Shante and Kirkpatrick 1971, Last and Thouless 1971, Essam 1972), were used to 
analyse the overall properties of randomly inhomogeneous materials. The single- 
vertex EMA, two-vertex EMA and three-vertex EMA, derived from the diagrammatic 
expansions, were shown to be equivalent to those obtained by effective-medium 
methods for a single bond, two bonds and three bonds, respectively, in the lattice model 
(Nagatani 1981a, b). In the non-self-consistent treatment, the approximations result in 
the expression of the effective conductivity as an integral power series of the fraction of 
broken bonds, and correspond to the group expansion for the continuum model derived 
by Jeffrey (1973,1974). 

Statistical theories of turbulence have been developed involving the diagrammatic 
expansions (Wyld 1961, Edwards 1964, Edwards and McComb 1969, Leslie 1973) and 
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Wiener-Hermite expansions (Siege1 et a1 1964, Imamura et a1 1965, Meecham and 
Jeng 1968, Crow and Canavan 1970). Wiener (1939, 1958) has proposed the novel 
method of expanding random fields as an orthogonal polynomial series in powers of the 
white noise. The terms in Wiener's expansion have the form of Hermite polynomials in 
the white-noise function. The feature that distinguishes the Hermite polynomials is that 
they are orthonormal with respect to a weighting function which has the form of a 
Gaussian probability distribution of unit variance. 

In this paper, we present orthogonal polynomials of binomial-random variables for 
transport in randomly inhomogeneous media. The polynomials are orthogonal under 
the weighting function which represents the multiple-binomial distribution function. 
We expand random functions in orthogonal polynomials of binomial variables and 
obtain truncated equations for the determination of kernels in the expansion. We 
represent the effective conductivity in terms of the kernels. The effective conductivity is 
calculated by deriving the approximate solutions of kernels. In 5 2 we give orthogonal 
polynomials of binary-random variables and summarise the outline of the expansion. 
Application to the bond model is given in 5 3. Truncated equations are derived for 
kernels, and the effective conductivity is evaluated by the approximate solution of 
kernels. In 8 4 we apply the expansion in orthogonal polynomials to the clumped-bond 
model and to the continuum model. 

2. OBUine of expansion 

As the basis for constructing our series, we use the 'binomial-random function' a h )  of 
a discrete-valued index xi  expressing the position of the space. For any fixed xi, a ( x , )  is a 
binary-random variable having zero mean and is independent of a ( x i )  whenever xi  # xi. 
The a ( x i )  is then defined by 

(a(xi)> = 0 (2.1) 

(2.2) 

where the angle brackets denote an ensemble average and S,,, is the Kronecker delta, 
equal to one when xi = xi, to zero otherwise. 

( a  (xi)a (xi)) = ( a  (xi)2>axzx, 

We define the polynomials B'"' of binomial variables by 

n-1  

B'")(xl, x2,  - - X n ) = a ( x l ) ( l - a x , x , )  n (1-ax,x,,1)' a(xk+l) 

The B'") are orthogonal under the weighting function which represents the multiple- 
binomial distribution function: 

for n == 3. 
k - 1  

(B(") (Xl ,  xq, . . * , x , )  B(m)(x;,  x ; ,  . . . , x i ) )  

0 for n # m 

distinct exogamous 
pairings pairs 

(2.4) 
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Here the symbols are to be interpreted as follows: 

n &,x; 
exogamous 

pairs 

is a product in which the xi  (or x i )  index from x1 (or xi)  to x, (or x ; )  appears just once as 
a subscript of the Kronecker delta multiplicand, subject to the restriction that each pair 
coupled in a delta function is 'exogamous' in the sense that the two partners in it come 
from different sets, (xl, x z , .  . . , x,)  and (xi, x; ,  . . . , x: ) .  In the summation, such a 
product appears just once for each distinct way of arranging all x variables. 

The expansion of a random function f in orthogonal polynomials is given by 

1 
f (x)=(f(x)>+C K"'(x; XI) B " ' ( x I ) + ~  K'"(x; X I ,  ~ 2 )  

X I  X l J 2  

1 
n !  x1.x2.. . . .X, 

X B ' 2 ' ( x 1 ,  x2)+ . . . +- 

X B ( " ) ( X l , X 2 ,  * . . , x, )  + . . . 
c K(")(x; XI,  x 2 , .  . . , x, )  

(2.5) 

where the summations over xn range over all positions of the space. Here it must be 
borne in mind that the kernels K are ordinary functions of their arguments, while the 
B's are random functions. The statistical properties of f will be determined by its 
moments, i.e. by exception values of the form 

(2.6) 
The computation of such an expansion can, by commuting the ( ) operation with the 
sums in (2.6), be reduced to the evaluation of sums of products of K's, since the 
exception values of products of B's are invariably combinations of Kronecker 8's. 

The application of the expansion (2.5) to stochastic equations involves three steps. 
Firstly, random functions are replaced by the expansion (2.5). Secondly, the resulting 
expression is multiplied by any one of the orthogonal polynomials of binomial variables. 
Thirdly, the product is averaged over the ensemble of binomial variables. The ensemble 
average projects the stochastic equation onto the statistically orthogonal polynomials of 
the binomial variable. These three steps extract an equation of the kernel that appears 
in (2.5) as the coefficient of the particular polynomial used in the first step. Applied to 
each polynomial in turn, the extraction process generates an infinite set of coupled 
equations for the determination of the infinite set of kernels in (2.5). Randomness is 
thereby removed from the problem at the outset, and one can concentrate on finding 
approximate solutions for the kernels. The expansion is computationally useful if it can 
be truncated after a few terms. 

( f ( x ' ) f ( x " )  . . . f(x'"')>. 

3. Application to inhomogeneous transport in the bond model 

We consider the problem of electrical conduction in bond-disordered resistor networks 
in which bonds are broken at random (bond model). The models are an infinite square 
resistor network and an infinite simple cubic resistor network. We consider the 
imperfect lattice in terms of perturbations from the perfect reference lattice, which is 
defined as a network of conductances go across each of which is a field Eo (=(E)). 
Making use of the Green function formalism (Blackman 1976, Ahmed and Blackman 
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1979, Nagatani 1981a, b), the electric field Ei of any one bond i can be expressed as 

Ei = Eo + riiAjEi 
i 

(3.1) 

where Aj = (gi -go)/go, gi is the conductance of a bond j in which each bond has a 
probability 1 - p  = c of taking the value gj  = 0 and a probability p = 1 - c of taking a 
finite value go, subscripts label bonds, and rii is a bond-bond Green function that 
depends on the type of lattice, the separation of bond i and j ,  and their relative 
orientation. We shall apply the expansion (2.5) to the stochastic equation (3.1). The 
random function Ei can be expanded in orthogonal polynomials of binomial-random 
variables as 

where 

Bj” = Ai + c Bj;’ = (1 - a,jk)(Aj + C)(Ak 4- C) 

B$L = ( l - S j k ) ( l - S k m ) ( l - S m i ) ( A j + ~ ) ( A k  + c ) ( A m  +c) . . * (3.3) 

(Ai) = -c and, in the summations, j ,  k and m range over all bonds of the lattice. 
In equation (3.1) the electric field Ei is replaced by (3.2). Applying each polynomial 

to the resulting expression in turn, the products are averaged over the ensemble of 
binomial variables. We then obtain an infinite set of coupled equations for the 
determination of kernels in (3.2). For the sake of computational usefulness, if it is 
truncated after the third term in (3.2), we obtain 

K(2) imn L rimK:jl +ri&: - c  1 ri&:” + (2c  - 1)rimK:in + (2c  - l)ri,,K!,?m. (3.5) 
I 

The expression for effective conductivity g* is given by 

A* E (AjEi)/Eo = -C + (C - c ~ ) K ~ ! ’  (3.6) 

where A* = (g* - go)/go. 
We solve equations (3.4) and (3.5) for the kernel K“’. For simplicity, we derive the 

solution of the kernel K(*) to the first order of the concentration c of broken bonds. For 
the second kernel KF,, we obtain from equation (3.5) 

By the substitution of equation (3.7) in equation (3.4), the first kernel Kj? is given by 
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Substituting equation (3.8) in equation (3.6), we obtain 

-=I--. g* 1 ro 2 

go i+ro '-(lf*' 

1287 

Our expression (3.9) for the effective conductivity agrees with that derived by the 
two-bond approximation (Nagatani 1981a). We see immediately that the truncation 
after the third term in the expansion (3.2) gives the exact value to order c 2 .  

4. Expansions for the clumped-bond and continuum models 

We present expansions in orthogonal polynomials of binomial variables for the 
clumped-bond model (Nagatani 1982) and for the continuum model (Hori and 
Yonezawa 1977). We derive truncated coupled equations for the determination of 
kernels in expansions. 

4.1. Clumped-bond model 

We consider the electrical conduction in clumped-bond-disordered resistor networks 
where clumps of bonds are broken at random in square and simple cubic resistor 
networks. The electric field Ea(i) of any one bond i within the clump a is determined by 

where Ab = (gb - go)/go, gb is the conductance of the bond in the clump b in which each 
clump has a probability c of taking the value gb = 0 and a probability 1 - c of taking a 
finite value go, the subscripts b v )  represent the bond j in the clump b, r a ( i ) b U )  is the 
bond-bond Green function between the bond i in the clump a and the bond j in the 
clump b, and, in the summations, b and j range over all clumps of the lattice and over all 
bonds within a single clump respectively. 

We apply the expansion (2.5) to the stochastic equation (4.1). The random function 
Ea(i) can be expanded in orthogonal polynomials of binary-random variables as 

(4.2) 
where 

Bb"=Ab+c Bb$) =(1-6bC)(&+C)(Ac +C) 
(4.3) ... B(3) - 

bcd - (1 - s b c > ( l  -acd)(l-6db)(Ab +c)(Ac fC)(Ad + c )  

(A,) = -c and, in the summations, b, c and d range over all clumps of the lattice. 
In equation (4.1) the electric field Ea(i) is replaced by (4.2). Applying each 

polynomial to the resulting expression in turn, and averaging over the ensemble of 
binomial variables, we obtain an infinite set of coupled equations for kernels in (4.2). If 
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it is truncated after the third term in (4.2), we obtain 

4.2. Continuum model 

We consider electrical conduction in a 2D (or 3D) inhomogeneous medium with 
spatially fluctuating conductivity. A randomly continuous medium can be represented 
by the cell model which was first proposed by Miller (1969a, b) and discussed in detail 
by Brown (1974) and Hori (1975). In the cell model, the space is completely covered by 
non-overlapping cells within which the material property is constant. Cells are dis- 
tributed in a manner such that the material is statistically homogeneous. The material 
property of a cell is statistically independent of that of any other cell. The equivalent 
expression for the electric fields in the continuum model is 

where Aa = (ga -go)/go, gP is the conductance of the cell in which each cell has a 
probability c of taking the value ga = 0 and a probability 1 - c of taking a finite value go, 
a ( x l )  represents the position x1 within the cell cy ,  subscripts i and j indicate the 
Cartesian components, the integral is extended over the space within a single cell, and, 
in the summation, p ranges over all cells of the whole space. The bond labels of 
equation (4.1) are replaced by a continuous variable x and a subscript i to indicate the 
Cartesian components. The Green functions rij(a ( x l ) ,  p (x2) )  appropriate to equation 
(4.8) are given by Hori and Yonezawa (1977). We apply the expansion (2.5) to the 
stochastic equation (4.8). The random function E i ( a ( x l ) )  can be expanded as 



Orthogonal polynomials of binomial-random variables 1289 

where 

B;) = A @  +C B f i  =(1 -&,)(AB +c)(A,+c)  . . .  (4.3’) 

(Ae) = -c and, in the summations, j3 and y range over all cells of the whole space. 
In equation (4.8) the electric field Ei(a(xl)) is replaced by (4.9). Applying each 

polynomial to the resulting expression in turn, and averaging over the ensemble of 
binomial variables, we obtain an infinite set of coupled equations for kernels. If it is 
truncated after the third term in (4.9), we obtain 

(4.10) 

If one finds approximate solutions for the kernels, one can derive the expression for the 
effective conductivity. Comparing the clumped-bond model with the continuum 
model, we see that the clumped-bond model presents the continuum model in the 
limiting case where the number of bonds in a clump is infinite. It is not easy to derive 
solutions of kernels for the continuum model, but one may derive solutions of kernels 
for the clumped-bond model. 
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